首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13355篇
  免费   2633篇
  国内免费   1044篇
电工技术   2764篇
技术理论   2篇
综合类   1233篇
化学工业   1684篇
金属工艺   544篇
机械仪表   1030篇
建筑科学   687篇
矿业工程   76篇
能源动力   832篇
轻工业   280篇
水利工程   153篇
石油天然气   140篇
武器工业   127篇
无线电   1814篇
一般工业技术   2322篇
冶金工业   113篇
原子能技术   130篇
自动化技术   3101篇
  2024年   57篇
  2023年   419篇
  2022年   510篇
  2021年   691篇
  2020年   795篇
  2019年   718篇
  2018年   625篇
  2017年   764篇
  2016年   714篇
  2015年   712篇
  2014年   923篇
  2013年   1064篇
  2012年   1013篇
  2011年   1116篇
  2010年   812篇
  2009年   785篇
  2008年   820篇
  2007年   892篇
  2006年   748篇
  2005年   624篇
  2004年   472篇
  2003年   369篇
  2002年   274篇
  2001年   223篇
  2000年   162篇
  1999年   152篇
  1998年   89篇
  1997年   91篇
  1996年   72篇
  1995年   66篇
  1994年   61篇
  1993年   50篇
  1992年   30篇
  1991年   31篇
  1990年   20篇
  1989年   22篇
  1988年   8篇
  1987年   4篇
  1986年   6篇
  1985年   2篇
  1984年   2篇
  1982年   4篇
  1981年   2篇
  1980年   7篇
  1979年   2篇
  1978年   3篇
  1975年   1篇
  1959年   1篇
  1957年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Polynorbornene/sepiolite hybrid nanocomposite films were prepared using polynorbornene dicarboximide and modified sepiolite with 3‐ aminopropyltriethoxysilane (3‐APTES). Exo‐N‐(3,5‐dichlorophenylnorbornene)‐5,6‐dicarboxyimide (monomer) and their copolymers were synthesized via ring‐opening polymerization using ruthenium catalysts. Subsequently, the surface‐modified sepiolite by 3‐APTES was mixed with the polynorbornene copolymers to prepare hybrid nanocomposite films. The modified sepiolite particles were well dispersed in N,N‐dimethylacetamide and distributed randomly throughout the polynorbornene matrix in the hybrid films, which enhanced the dimensional stability and mechanical and oxygen barrier properties of the polynorbornene/sepiolite hybrid nanocomposite films. © 2014 Society of Chemical Industry  相似文献   
52.
In this article, we report the influence of organic modifier structure (alkyl chain length C8-C20, single vs ditallow) and thereby, the effect of hydrophobicity on the structure, thermal and mechanical properties of poly(methyl methacrylate) (PMMA)-clay hybrids. Melt processed PMMA-clay hybrids were characterized using wide-angle X-ray diffraction, transmission electron microscopy, and differential scanning calorimetry. The organoclays having an alkyl chain length of more than 12 CH2 groups resulted in the formation of nanocomposites. The glass transition temperature (Tg) of PMMA increased in the presence of clay. The mean-field lattice model was used to predict the free energy for nanocomposite formation, which showed a reasonable match with the experimental results and provided a general guideline for the proper selection of polymer and organoclay (ie, organic modifier) to obtain nanocomposite. Tensile modulus showed maximum improvement of 58% for the nanocomposites compared to 9% improvement for the composites. Tensile modulus increased with increases in the alkyl chain length of the organic modifier and clay loading. The level of improvement for the tensile properties of nanocomposites prepared from primary and secondary ammonium-modified clay is the same as that obtained with the commercial organoclays.  相似文献   
53.
The intermittent wind power in isolated hybrid distributed generation (IHDG) may cause serious problems associated with frequency (f) and power (P) fluctuation. Energy storage devices such as battery, super capacitor, and superconducting magnetic energy storage (SMES) may be used to reduce these fluctuations associated with f and P. This paper presents a study of IHDG power system for improving both f and P deviation profiles with the help of SMES. The studied IHDG power system is consisted of wind turbine generator and diesel engine generator. Both f and P control problems of the studied power system model are addressed in presence or absence of SMES. Fuzzy logic based proportional–integral–derivative (PID) controller with SMES is used for the purpose of minimization of f and P deviations. The different tunable parameters of the PID controller and those of the SMES are tuned by a novel quasi-oppositional harmony search algorithm. Performance study of the IHDG power system model is carried out under different perturbation conditions. The results demonstrate minimum f and P deviations may be achieved by using the proposed fuzzy logic based PID controller along with SMES.  相似文献   
54.
Taking into account the effect of structural compliance, inverse dynamics of the active over-constrained parallel manipulator 6PUS–UPU with five degrees of freedom is solved in this article. Firstly, the relationship between driving forces and actuated force screws of each limb is derived. Then the coordination of elastic deformation between limbs which consider the effect of gravity and inertia is acquired. Finally the unique solution of driving forces for the active over-constrained parallel manipulator is derived by incorporating the force equilibrium equation of the moving platform. To validate the theoretical derivation, dynamics simulation model of manipulator based on rigid–flexible mixed structure is shown and numerical examples are given. Comparison with the traditional method of dynamics based on pseudo-inverse is also made. Finally, a feasible experimental method, as an effective test to the theoretical calculation, is proposed and applied on the prototype.  相似文献   
55.
In the past, glass fiber-reinforced polymer (GFRP)-reinforcement has been successfully applied in reinforced concrete (RC) structures where corrosion resistance, electromagnetic neutrality, or cuttability were required. Previous investigations suggest that the application of GFRP in RC structures could be advantageous in areas with seismic activity due to their high deformability and strength. However, especially the low modulus of elasticity of GFRP limited its wide application as GFRP-reinforced members usually exhibit considerably larger deformations under service loads than comparable steel-reinforced elements. To overcome the aforementioned issues, the combination of steel and GFRP reinforcement in hybrid RC sections has been investigated in the past. Based on this idea, this paper presents a novel concept for the predetermination of potential plastic hinges in RC frames using GFRP reinforcement. To analyze the efficiency of the concept, nonlinear finite element simulations were performed. The results underscore the high efficiency of hybrid steel-GFRP RC sections for predetermining potential plastic hinges on RC frames. The results also indicate that the overall seismic behavior of RC structures could be improved by means of GFRP as both the column base shear force during the seismic activity as well as the plastic deformations after the earthquake were considerably less pronounced than in the steel-reinforced reference structure.  相似文献   
56.
Light induced catalytic processes have attracted significant attention during the last years for wastewater treatment due to their efficiency in decomposition of organic contaminants. In this study we report the synthesis of graphene oxide (GO)/ZnO hybrid layers with high photocatalytic efficiency using laser radiation. The results show that the hybrid layers exhibit much improved photodecomposition efficiency as compared to pure GO or ZnO both under UV and visible-light irradiation. The enhanced photocatalytic efficiency of the hybrid as compared to the reference pure ZnO and GO layers was attributed to the contribution of GO to the separation and transport of the photogenerated charge carriers. Additionally, under visible light irradiation the organic molecules can act as first sensitizers in the degradation process. The recyclability of the layers was also investigated through repetitive photodegradation cycles under UV- or visible-light irradiation. After consecutive degradation runs, the hybrid photocatalyst layers were still stable and retained high degradation efficiency, ensuring reusability. The photocatalytic activity of the layers was correlated with the gradual change of their chemical structure during consecutive degradation cycles. Owing to the high photodegradation efficiency, reusability, and ease of recovery the synthesised hybrid layers consisting of easily available materials are suitable for environmental purification applications.  相似文献   
57.
58.
瓦斯和煤尘复合爆炸是煤矿井下爆炸灾害的主要形式之一,研究瓦斯/煤尘复合爆炸下限变化规律,是有效防治煤矿爆炸灾害的必备条件。为研究煤尘组分对瓦斯/煤尘复合爆炸下限的影响,特选用2种组分不同的煤尘(烟煤和无烟煤)。依据EN 14034标准,使用10 kJ化学点火头在标准20L球形爆炸容器中,分别对2种煤尘的最小爆炸浓度、相同试验条件下的瓦斯爆炸下限以及煤尘与瓦斯的复合爆炸下限进行了测量。试验测得烟煤和无烟煤的最小爆炸浓度分别为50 g/m^3和70 g/m^3,瓦斯爆炸下限为4%。当煤尘中分别通入1%、2%、3%、4%的瓦斯后,烟煤最小爆炸浓度分别降低至40、20、5、0 g/m^3,无烟煤最小爆炸浓度分别降低至50、20、5、0 g/m^3。基于上述测量结果,对比分析了煤尘组分对瓦斯/煤尘复合爆炸下限变化规律的影响,并探讨了Le Chatelier、Bartknecht、Jiang等气粉复合爆炸下限预测模型对瓦斯/煤尘复合体系的适用性。结果表明:2种煤尘的最小爆炸浓度均随瓦斯浓度的增大而降低,但挥发分含量低的煤尘降幅更大,即瓦斯对低挥发分煤尘最小爆炸浓度的影响更为显著。Jiang模型预测值远远偏离实际测量值;Le Chatelier模型预测值高于实际测量值,且误差随瓦斯浓度的增大而增大;Bartknecht模型适用性相对较好,且更适用于低挥发分瓦斯/煤尘复合体系。  相似文献   
59.
Hybrid electric vehicles (HEVs) with low fuel consumption, low emissions, and long driving range are the ideal transition models between conventional fuel vehicles and pure electric vehicles. The growing demand for increased vehicle efficiency has motivated the introduction of waste heat recovery (WHR) technology in the automotive industry, with the organic Rankine cycle (ORC) as the most promising measure for recycling waste energy. Currently, only a few studies have been conducted to couple HEV and WHR systems. These studies have mainly focused on the hybrid powertrain control strategy, but lack quantitative methods to comprehensively analyze the fuel-saving potential due to the WHR system. In this study, an HEV-WHR integrated system that includes a mechanism-based dynamic model of ORC and a hybrid diesel-electric truck model is established. Further, a quantitative evaluation method that simultaneously considers the negative integrated effects (increased vehicle weight and increased exhaust back pressure) and the positive impact values of the engine, motor, and WHR system on the fuel-saving potential is proposed. Finally, the influence of two environmental factors (wind speed and ambient temperature) on the fuel-saving performance is analyzed. The results reveal that under the standard highway driving cycle (HWY), the negative integrated effects reduce the ideal fuel-saving potential of the HEV-WHR system from 6.10% to 5.42%. However, the optimized performances of the engine, motor, and WHR system improve the fuel-saving rate by 0.39%, 1.81%, and 3.22%, respectively. The results also indicate that the fuel-saving potential increases from 1.62% to 8.60% with increasing wind speed and decreases from 6.70% to 4.25% with increasing ambient temperature.  相似文献   
60.
Metal particles coating is extensively used for surface coating a wide range of application including thermal management of electronics, concentrating photovoltaics, sensors and nuclear power plants. Both micro and nano-scale surfaces have been proven to show an enhanced two-phase heat transfer performance by varying surface properties like area, wettability, and roughness. To combine the unique features of both micro and nano-scale surface coatings, this study presents the design, synthesis, and characterization of new hybrid micro-nano scale surface coating by a new two steps approach. Five different types of surfaces; namely, plain nanocoated (PNC), uniform micro-porous (UMP), uniform hybrid micro-nano porous (UHMNP), 2-D modulated microporous (MMP) and modulated hybrid micro-nano (MHMNP) surfaces were fabricated. A new two steps approach of hot-pressing followed by nucleate boiling is used for the fabrication of these surfaces. Successful coating of hybrid micro-nano scale coating was achieved. Considering the critical surface properties of micro and nanoscale coatings, new hybrid micro-nano surfaces have been characterized for SEM, wettability, roughness test. The comparative analysis of these new hybrid coating is also performed with micro coated and uncoated surfaces. With the coating of nanoparticles, the average roughness of PNC surface increased by 4.67 times and that of hybrid micro-nano particle surface by 2.3 times. The deposition of nanoparticles resulted in an increase in contact angle for PNC surface, while the contact angle of hybrid micro-nano surfaces decreases from 126.4° to 82.1°.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号